УТВЕРЖДАЮ Руководитель ГЦИ СИ кая обла арное np мсследо ФГУП «ВНИИФТРИ» MOT М.В. Балаханов RHN 2011 г. >> 10

Инструкция

Измеритель коэффициента шума Х5М-18

Методика поверки ЖНКЮ.468166.011ДЗ

Менделеево, Московской обл. 2011

Содержание

1 Общие указания	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования безопасности	5
5 Условия проведения поверки	5
6 Подготовка к поверке	6
7 Проведение поверки	6
7.1 Внешний осмотр	6
7.2 Проверка присоединительных размеров	6
7.3 Опробование	6
7.4 Проверка программного обеспечения	7
7.5 Определение метрологических характеристик	9
7.5.1 Определение КСВН входа	9
7.5.2 Определение относительной погрешности установки частоты внутреннего	
опорного генератора	10
7.5.3 Определение диапазона рабочих частот, относительной погрешности	
установки частоты	11
7.5.4 Определение напряжения питания ГШ	12
7.5.5 Определение собственного коэффициента шума	13
7.5.6 Определение диапазонов и систематических погрешностей измерений	
коэффициента передачи и коэффициента шума	14
7.5.7 Определение случайной погрешности измерений коэффициента передачи	19
7.5.8 Определение нестабильности результатов измерений коэффициента шума	20
8 Оформление результатов поверки	21

1 Общие указания

1.1 Настоящая методика устанавливает методы и средства первичной и периодической поверки измерителя коэффициента шума X5M-18 (далее X5M или измеритель).

1.2 Поверка X5М производится аккредитованными органами метрологической службы. Межповерочный интервал – 12 месяцев.

1.3 Перед проведением поверки поверителю следует ознакомиться с указаниями, изложенными в руководстве по эксплуатации ЖНКЮ.468166.011РЭ.

2 Операции поверки

2.1 При проведении поверки следует выполнить операции, указанные в таблице 2.1.

Таблица 2.1 – Операции, необходимые в процессе поверки

	Номер пункта	Обязательно	ость проведе-
Наименование операции	методики повер-	ния при поверке	
паименование операции	КИ	первичной	периоди- ческой
Внешний осмотр	7.1	+	+
Проверка присоединительных размеров	7.2	+	+
Опробование	7.3	+	+
Проверка программного обеспечения	7.4	+	+
Определение метрологических характеристик:	7.5		
Определение КСВН входа	7.5.1	+	+
Определение относительной погрешности установ- ки частоты внутреннего опорного генератора	7.5.2	+	+
Определение диапазона рабочих частот, относи- тельной погрешности установки частоты	7.5.3	+	+
Определение напряжения питания ГШ	7.5.4	+	+
Определение собственного коэффициента шума	7.5.5	+	+
Определение диапазонов и систематических по- грешностей измерений коэффициента передачи и коэффициента шума	7.5.6	+	+
Определение случайной погрешности измерений коэффициента передачи	7.5.7	+	+
Определение нестабильности результатов измере- ний коэффициента шума	7.5.8	+	+

2.2 В случае выявления несоответствия требованиям в ходе выполнения любой операции, указанной в таблице 2.1, поверка прекращается, поверяемый образец X5M бракуется и на него оформляют извещение о непригодности в соответствии с ПР 50.2.006-94.

3 Средства поверки

3.1 При проведении поверки X5M следует применять средства поверки, вспомогательные средства, указанные в таблице 3.1.

	Таблица	3.1 – C	редства	поверки	и вспомог	ательные	средства
--	---------	---------	---------	---------	-----------	----------	----------

п.п. ме- тодики поверки	Наименование и тип основного или вспомогательного средства поверки, требуемые технические и метрологические характеристики средства поверки
7.2	Комплект для измерения соединителей коаксиальных КИСК – 7. Пределы допус- каемой погрешности измерения присоединительных размеров соединителей ±0,02 мм.
7.2	Комплект для измерения соединителей коаксиальных КИСК – 3,5. Пределы допус- каемой погрешности измерения присоединительных размеров соединителей ±0,02 мм.
7.3, 7.5.5, 7.5.6, 7.5.7, 7.5.8	Генератор шума 346В с опцией 001. Диапазон рабочих частот от 10 МГц до 18 ГГц; ИОШТ от 14 до 16 дБ, пределы допускаемой погрешности генерируемого уровня ИОШТ ±0,25 дБ; КСВН выхода не более 1,3. Либо генератор шума 346С (для измерителей X5M с опцией «13Н»). Диапазон рабо- чих частот от 10 МГц до 20 ГГц; ИОШТ от 12 до 17 дБ, пределы допускаемой по- грешности генерируемого уровня ИОШТ ±0,35 дБ; КСВН выхода не более 1,4.
7.5.1, 7.5.3, 7.5.6	Измеритель модуля коэффициента передачи и отражения P2M-18. Диапазон рабочих частот от 10 МГц до 18 ГГц (для измерителей X5M с опцией «13H» – от 50 МГц до 20 ГГц для п. 7.5.3). Пределы относительной погрешности установки частоты выходного сигнала $\pm 5 \cdot 10^{-6}$ Пределы допускаемой погрешности измерений КСВН $\pm (3 \cdot K_{cmU} + 1)$ %. Диапазон установки уровня выходной мощности от 0,1 до 3 мВт. Дискретность установки уровня выходной мощности 0,1 дБ.
7.5.1	Анализатор цепей векторный E8364B. Диапазон рабочих частот от 10 МГц до 20 ГГц (для измерителей X5M с опцией «13H»). Пределы относительной погрешно- сти установки частоты выходного сигнала $\pm 5 \cdot 10^{-6}$. Пределы допускаемой погрешно- сти измерений КСВН $\pm (3 \cdot K_{cmU} + 1)$ %. Диапазон установки уровня выходной мощ- ности от 0,01 до 0,02 мВт.
7.5.2 7.5.3	Частотомер электронно-счетный Ч3-66. Частоты измерений 10 и 70 МГц. Относи- тельная погрешность по частоте кварцевого генератора за один год $\pm 5 \cdot 10^{-7}$.
7.5.4	Мультиметр цифровой АРРА 305. Пределы допускаемой погрешности измерения напряжения постоянного тока ± 0,1 %.
Bo	спомогательные средства:
7.5.3,	Набор мер НЗ-7 (набор аттенюаторов). Диапазон частот от 10 МГц до 18 ГГц; КСВН
7.5.6	не оолее 1,1 до 100 МГц.
7.5.3 7.5.6	наоор мер н/м-18-3,5 мм (наоор аттенюаторов). Диапазон частот от 10 МI ц до 18 ГГн: КСВН не более 1.1 ло 100 МГн
7.3 – 7.5	Персональный компьютер (ПК). Минимальные требования: процессор Intel® Pentium II® 600 МГц (или аналог), наличие адаптера локальной сети – Ethernet, оперативная память 512 Мб, операционная система Windows® 2000 (SP 4), Windows® XP (SP 2), Windows® Vista, разрешение экрана 1024×768 и выше.
7.5.6	Ступенчатый аттенюатор со ступенью ослабления не более 10 дБ. Диапазон рабочих частот от 10 до 100 МГц.
7.5.3, 7.5.6	Коммутатор локальной сети D-Link.

п.п. ме- тодики поверки	Наименование и тип основного или вспомогательного средства поверки, требуемые технические и метрологические характеристики средства поверки
	Переходы
	Переход тип N, вилка – тип 3,5 мм, вилка. Диапазон рабочих частот от 10 МГц до
	18 ГГц. КСВН не более 1,05.
	Переход тип III, розетка – тип N, вилка. Диапазон рабочих частот от 10 МГц до
	18 ГГц.
	Переходы тип N, вилка – тип 3,5 мм, розетка (2 шт.); тип III, вилка – тип 3,5 мм, ро-
	зетка. КСВН не более 1,1 в диапазоне частот до 100 МГц.
	Для измерителя с опцией «13Н» дополнительно:
	Переход тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка (1 шт.) либо тип 3,5 мм, ро-
	зетка – тип 3,5 мм, розетка.
	Кабели
	Кабели тип BNC, вилка – тип SMA, вилка (1 шт.); тип BNC, вилка – тип BNC, вилка
	(1 шт.); тип SMA, вилка – тип SMA, вилка (2 шт.).
	Типы соединителей в соответствии с ГОСТ РВ 51914-2002.
Прии	мечания:
1 Π _m	NANDALLA THE TOPOLOGICA POLICIPAL CONTRACTOR TOPOLOGICA TOPOLOGICA TOPOLOGICA

1. Применяемые при поверке средства измерений должны быть поверены и иметь действующие свидетельства о поверке.

2. Допускается применение иных средств измерений, обеспечивающих определение метрологических характеристик поверяемого измерителя с требуемой точностью.

4 Требования безопасности

4.1 При проведении поверки необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей», «Правила техники безопасности при эксплуатации электроустановок потребителей» и правила охраны труда.

4.2 К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности на рабочем месте, имеющие группу по технике электробезопасности не ниже II по работе с напряжением до 1000 В, освоившие работу с X5M и применяемыми средствами поверки в соответствии с руководствами по эксплуатации на них, изучившие настоящую методику и аттестованные в соответствии с ПР 50.2.012–94.

ПРЕДОСТЕРЕЖЕНИЕ: При работе с прибором возможно поражение электрическим током.

4.3 Перед подключением измерителя к сети или подключением к нему других приборов необходимо убедиться в исправности шнура сетевого и соединить зажим защитного заземления, обозначенный символом () и находящийся на задней панели прибора, с заземляющим проводником (или с зануленным зажимом питающей сети, при отсутствии системы заземления).

4.4 Зажим защитного заземления следует отсоединять после отключения измерителя от сети питания и от других приборов.

5 Условия проведения поверки

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха от 15 до 25 °С;
- относительная влажность воздуха не более 80 %;
 - от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.).
- атмосферное давление

5

6 Подготовка к поверке

6.1 Перед поверкой Х5М убедиться в выполнении условий проведения поверки.

6.2 Подготовить X5M и средства поверки к проведению измерений в соответствии с указаниями, приведенными в их руководствах по эксплуатации.

6.3 Перед проведением измерений выдержать X5M и средства поверки во включенном состоянии в течение времени, указанного в их руководствах по эксплуатации. Время установления рабочего режима X5M 60 минут.

6.4 Операции настройки, подключения, управления измерителем, установки параметров измерений и отображения результатов подробно описаны в руководстве по эксплуатации.

7 Проведение поверки

Протоколы записи результатов измерений при поверке (протоколы поверки) допускается вести в произвольной форме, если в описании операции поверки нет иных указаний.

7.1 Внешний осмотр

7.1.1 При внешнем осмотре проверить отсутствие видимых механических повреждений корпуса, шумов внутри корпуса, обусловленных наличием незакрепленных деталей, следов коррозии металлических деталей и отсутствие следов воздействия жидкостей или агрессивных паров, сохранность маркировки и пломб. Провести визуальный контроль чистоты и целостности соединителей входов/выходов измерителя.

7.1.2 Результаты считать положительными, если выполняются все требования, перечисленные в 7.1.1, в противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.2 Проверка присоединительных размеров

7.2.1 Проверку присоединительного размера входа «СВЧ» Х5М с опцией «11Р» проводить с применением комплекта КИСК – 7 в соответствии с указаниями его эксплуатационной документации; для измерителей с опцией «13Н» проверку присоединительного размера проводить с применением комплекта КИСК – 3,5.

7.2.2 Результаты выполнения операции считать положительными, если присоединительный размер соответствует требованиям ГОСТ РВ 51914-2002 для соединителей тип N, розетка у измерителей с опцией «11Р», и для соединителей тип 3,5 мм, вилка у измерителей с опцией «13Н». В противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.3 Опробование

7.3.1 Для включения Х5М проделать следующее:

- включить ПК;
- установить программное обеспечение, если оно не было ранее установлено;
- убедиться, что переключатель «Вкл.» Х5М находится в выключенном состоянии «О»;
- соединить клемму « » с шиной защитного заземления;
- соединить X5М и ПК с помощью кабеля Ethernet;
- подключить измеритель к сети ~ 220 В 50 Гц с помощью шнура сетевого;

- установить переключатель «Вкл.» в положение включено «І»;

- запустить программу управления X5М в режиме «Метод двух отсчётов»¹⁾, осуществить подключение к ПК.

7.3.2 Подготовить к работе ГШ, пользуясь указаниями, приведенными в руководстве по эксплуатации на него.

7.3.3 Подключить ГШ без кабеля электропитания к входу «СВЧ» X5M²⁾.

7.3.4 Нажать кнопку «Восстановить начальные параметры» для установки параметров по умолчанию.

7.3.5 Убрать флажок из поля «Генератор шума», начать процесс измерений, нажав соответствующую кнопку на панели инструментов (далее по тексту – начать процесс измерений). Выбрать «Автомасштаб» в меню трассы с привязкой «Мощн(хол.)» (далее указывается название трассы по привязке). Убедиться в том, что в графическом окне вывода данных на экране ПК отображаются результаты измерения мощности шума во всем диапазоне частот.

7.3.6 Запомнить трассу «Мощн(хол.)», выбрав пункт «Запомнить» в меню трассы. Переместить маркер на произвольную частоту, сделать его активным. В контекстном меню маркера выбрать «Сбросить все маркеры». Остановить процесс измерений, нажав соответствующую кнопку на панели инструментов (далее по тексту – остановить процесс измерений). Установить значения начальной и конечной частот диапазона 1000 и 2000 МГц соответственно. Начать процесс измерений и для трассы «Мощн(хол.)» изменить значение опорного уровня на 1 дБ. Проверить соответствующие изменения оцифровки осей в графическом окне. Остановить процесс измерений.

7.3.7 Результаты проверки считать положительными, если программа управления загружается, X5M реагирует на управление, в течение измерений не появляются сообщения об ошибках или ошибки устраняются перезагрузкой программы управления или изменением настроек сетевого подключения. В противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт

7.4 Проверка программного обеспечения

7.4.1 Проверка проводится для подтверждения соответствия программного обеспечения измерителя тому ПО, которое было зафиксировано при испытаниях в целях утверждения типа средства измерений, и обеспечения защиты программного обеспечения от несанкционированного доступа во избежание искажений результатов измерений.

7.4.2 Запустить программу управления X5M в режиме «Метод двух отсчётов», произвести подключение к измерителю. Выбрать из меню «Справка» пункт «О программе Graphit...». Номер версии ПО, отображаемый в появившемся окне, должен соответствовать приведенному на рисунке 7.1. Закрыть окно «О программе Graphit...».

¹⁾ Запуск программы при включенном измерителе в каком-либо режиме осуществляется выбором в меню «Файл» пункта «Открыть схему». При этом закрывается текущее приложение и открывается новое с запросом на подключение к измерителю.

²⁾ Для X5M с опцией «13Н» подключить ко входу СВЧ переход тип 3,5 мм, розетка – тип 3,5 мм, розетка либо тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка.

Рисунок 7.1 – Вид окна ПО *Graphit* при проверке номера версии

7.4.3 Проверить отображаемый номер версии в заголовке окна ПО Graphit (место расположения номера версии по рисунку 7.2). Номер версии должен совпадать с определенным по 7.4.2.

Рисунок 7.2 – Вид окна ПО Graphit при проверке номера версии

7.4.4 Определить цифровой идентификатор ПО (контрольную сумму исполняемого кода) файла «launcher.exe» по алгоритму md5. Для расчета цифрового идентификатора применяется программа (утилита) «WinMD5 free», использующая алгоритм md5. Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

7.4.5 Запустить программу «WinMD5 free». Нажать кнопку «Browse» и в появившемся диалоговом окне «Открыть» указать путь х:\Program Files\Micran\Graphit X5M 2.2rc6\, (х – название раздела локального диска), где расположен файл «launcher.exe».

🗣 WinMD5Free v1.20	
WinMD5Free	www.winmd5.com
Select a file to compute MD5 checksum (or drag and drop a file onto this window)	Browse
File Name and Size: n/a Current file MD5 checksum value: n/a	
Original file MD5 checksum value (optional). It usually can be found from website paste its original md5 value to verify	or .md5 file.
<u>W</u> ebsite <u>A</u> bout	E⊻it

Рисунок 7.3 – Вид окна программы «WinMD5 free»

7.4.6 После выбора файла программа автоматически произведет расчет. Результат будет отражен в поле «Current file MD5 checksum value:».

WinMD5Free v1.20	×
WinMD5Free www.winmd5.co	m
Select a file to compute MD5 checksum (or drag and drop a file onto this window)	
C:\Program Files\Micran\Graphit X5M 2.2rc6\launcher.exe Browse	
Cancel File Name and Size: C:\Program Files\Micran\Graphit X5M 2.2rc6\launcher.exe (299520 bytes) Current file MD5 checksum value:	J
4cf4a9e436c53b5992219d73e3c1a683	
Original file MD5 checksum value (optional). It usually can be found from website or .md5 file.	
paste its original md5 value to verify Verify	
<u>W</u> ebsite <u>A</u> bout E <u>x</u> it	

Рисунок 7.4 – Вид окна программы «WinMD5 free»

7.4.7 Цифровой идентификатор должен соответствовать приведенному на рисунке 7.4.

7.4.8 Результат проверки считать положительным, если номер версии ПО и цифровой идентификатор соответствуют приведенным на рисунках 7.1 и 7.4 соответственно. В противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт

7.5 Определение метрологических характеристик

7.5.1 Определение КСВН входа

7.5.1.1 Для определеня КСВН входа СВЧ измерителя Х5М с опцией «11Р» подготовить измеритель модуля коэффициента передачи и отражения к проведению измерений в частотном диапазоне от 10 МГц до 18 ГГц в соответствии с руководством по эксплуатации на него. Для измерителей Х5М с опцией «13Н» вместо измерителя модуля коэффициента передачи и отражения использовать анализатор цепей векторный для измерений КСВН в частотном диапазоне от 10 МГц до 20 ГГц. Измерения КСВН входа СВЧ измерителя Х5М проводить при уровнях выходной мощности измерителя модуля коэффициента передачи и отражения и анализатора цепей векторного 0,1 мВт и 0,01 мВт сответственно.

7.5.1.2 Запустить программу управления X5M в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Установить начальную и конечную частоты 50 и 60 МГц соответственно. Запустить и остановить процесс измерений.

7.5.1.3 Собрать схему измерений в соответствии с рисунком 7.5.

ПК – персональный компьютер; Коммутатор – коммутатор локальной сети; Р2М – измеритель модуля коэффициента передачи и отражения (либо анализатор цепей векторный); Х5М – измеритель; П1 – переход тип N, вилка – тип 3,5 мм, вилка; Д и К – датчик КСВ и кабель СВЧ из состава Р2М

Рисунок 7.5 – Схема измерений КСВН входа СВЧ поверяемого измерителя

7.5.1.4 Измерить зависимость КСВН входа СВЧ X5М от частоты в диапазоне рабочих частот поверяемого измерителя.

7.5.1.5 Результаты поверки считать положительными, ес	сли:
КСВН входа «СВЧ», не более	
от 10 до 50 МГц	2,8
свыше 50 до 3200 МГц	1,8
свыше 3200 до 16000 МГц	1,8
свыше 16000 до 18000 МГц	2,0
свыше 18000 до 20000 МГц	2,7
КСВН входа «СВЧ» для опций «АТА/70» и/или «АПА».	, не более
от 10 до 50 МГц	2,8
свыше 50 до 3200 МГц	1,9
свыше 3200 до 16000 МГц	1,9
свыше 16000 до 18000 МГц	2,4
свыше 18000 до 20000 МГц	2,7,

в противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.2 Определение относительной погрешности установки частоты внутреннего опорного генератора

7.5.2.1 Подготовить к работе частотомер электронно-счетный (далее частотомер) согласно руководству по эксплуатации на него. Соединить вход частотомера с выходом "ОГ" X5M-18, прогретого в течение 1 часа, с помощью кабеля тип BNC, вилка – тип BNC, вилка.

7.5.2.2 Измерить с помощью частотомера частоту внутреннего опорного генератора X5M-18 $f_{O\Gamma, U3M}$ в Гц. Зафиксировать результат измерений. Рассчитать относительную погрешность установки частоты внутреннего опорного генератора $\delta f_{O\Gamma}$ по формуле (7.1):

$$\delta f_{\rm OF} = \frac{f_{\rm OF.H3M} - f_{\rm OF.HOM}}{f_{\rm OF.HOM}}$$
(7.1)

где $f_{O\Gamma,HOM} = 1.10^7 \Gamma_{II}$ – номинальное значение частоты внутреннего опорного генератора.

7.5.2.3 Результат проверки считать положительным, если относительная погрешность установки частоты внутреннего опорного генератора δf_{OF} находится в пределах $\pm 2,5\cdot 10^{-6}$, в противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.3 Определение диапазона рабочих частот, относительной погрешности установки частоты

7.5.3.1 Подготовить измеритель модуля коэффициента передачи и отражения к работе в качестве синтезатора частот, набор мер и частотомер электронно-счетный (далее частотомер) согласно их руководствам по эксплуатации.

7.5.3.2 Собрать схему измерений в соответствии с рисунком 7.6. Соединить выход опорного генератора частотомера «5 МГц» со входом «ОГ» измерителя модуля коэффициента передачи и отражения с помощью кабеля тип BNC, вилка – тип BNC, вилка (не отображено на рисунке).

ПК – персональный компьютер; Коммутатор – коммутатор локальной сети; Р2М – измеритель модуля коэффициента передачи и отражения; Х5М – измеритель; П1 – переход тип 3,5 мм, розетка – тип III, вилка для измерителя с опцией «11Р» (для измерителя с опцией «13Н» переход не требуется); А1 – последовательно соединенные аттенюаторы 10 и 30 дБ из набора мер (либо аттенюатор 30 дБ); П2 – переход тип III, розетка – тип N, вилка для измерителя с опцией «11Р» (для измерителя с опцией «11Р» (для измерителя с опцией «11Р» и в состава Р2М; К2 – кабель BNC, вилка – SMA, вилка

Рисунок 7.6 – Схема измерений относительной погрешности установки частоты

7.5.3.3 Установить на измерителе модуля коэффициента передачи и отражения фиксированную частоту выходного сигнала $f_{VCT} = 50 \text{ M}\Gamma$ ц и выходную мощность от 0,1 до 1,0 мВт, а также синхронизацию от внешнего опорного генератора с частотой 5 МГц; убедиться, что индикатор «ПЕРГРУЗКА» Х5М-18 не светится.

7.5.3.4 Запустить программу управления X5M в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Установить на X5M значение фиксированной частоты 50 МГц, подтвердить ввод данных, нажав кнопку «Enter» на клавиатуре ПК. Начать процесс измерений.

7.5.3.5 Измерить с помощью частотомера промежуточную частоту X5M $f_{\Pi \Psi}$ в Гц. Зафиксировать результат измерений. Рассчитать относительную погрешность установки частоты δf по формуле (7.2):

$$\delta f = \frac{f_{\Pi \Psi} - f_{\Pi \Psi, HOM}}{f_{VCT}}, \qquad (7.2)$$

где $f_{\Pi \Psi, HOM}$ – номинальное значение промежуточной частоты, равное 7.10⁷ Гц.

7.5.3.6 Последовательно устанавливая на измерителе модуля коэффициента передачи и отражения и X5M частоты f_{уст}, равные 500, 1 000, 2 000, 4 000, 6 000, 8 000, 10 000, 12 000, 14 000, 16 000, 18 000 МГц (для измерителей X5M с опцией «13H» дополнительно установить частоту 20000 МГц), определить бf. По окончании измерений установить обратно перемычку, соединяющую разъемы ПЧ на задней панели X5M.

7.5.3.7 Результаты поверки считать положительными, если относительная погрешность установки частоты δf не выходит за пределы $\pm 2 \cdot 10^{-5}$, в противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.4 Определение напряжения питания ГШ

С помощью мультиметра определить напряжение на выходе «ГЕНЕРАТОР ШУМА» X5М при включенном и выключенном состояниях ГШ.

7.5.4.1 На мультиметре установить автоматический выбор пределов и перевести в режим измерений постоянного напряжения. Соединить выводы мультиметра с выходом «ГЕНЕРАТОР ШУМА».

7.5.4.2 Запустить программу управления в режиме «Метод двух отсчетов», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры».

7.5.4.3 Убедиться в том, что индикатор состояния ГШ не светится. Если он светится, выключить ГШ, убрав флажок в поле «Генератор шума». Занести значение напряжения питания при выключенном ГШ в таблицу 7.1.

7.5.4.4 Включить питание ГШ, установив флажок в поле «Генератор шума». Начать процесс измерений. Убедиться в том, что индикатор состояния ГШ светится. Измерить напряжение. Остановить процесс измерений. Занести значение напряжения питания при включенном ГШ в таблицу 7.1.

Состояние ГШ	Номинальное значение	Измеренное значение	Допускаемое от-
	напряжения питания,	напряжения питания,	клонение, В
	В	В	
Выключен	0,0		+ 0,5
Включен	28,00		± 0,28

Таблица 7.1 – Значения напряжения питания ГШ

7.5.4.5 Результаты поверки считать положительными, если разность измеренного и номинального значений напряжения питания ГШ в обоих состояниях не выходит за пределы допускаемых отклонений, в противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.5 Определение собственного коэффициента шума

7.5.5.1 Подготовить к работе ГШ, пользуясь указаниями, приведенными в его руководстве по эксплуатации.

7.5.5.2 Подключить ГШ к входу «СВЧ» Х5М¹⁾; разъем питания ГШ соединить с выходом «ГШ» Х5М при помощи кабеля питания ГШ (из состава поверяемого Х5М).

7.5.5.3 Запустить программу управления в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Для измерителей X5M с опцией «11P» установить начальную и конечную частоты диапазона 10 и 18 001 МГц соответственно (для измерителей с опцией «13H» установить частотный диапазон от 10 до 20000 МГц), установить ширину полосы пропускания фильтра ПЧ 3 МГц, количество точек 5001, степень усреднения 14, подтвердить ввод данных. В меню «Параметры» выбрать пункт «Характеристика ГШ». Проверить соответствие значений избыточной относительной шумовой температуры (ИОШТ) ГШ, приведенных в появившейся таблице, используемому ГШ. При необходимости заменить таблицу или занести в нее значения ИОШТ из свидетельства о поверке ГШ, после этого нажать кнопку «ОК».

7.5.5.4 Начать процесс измерений. Убедиться, что индикатор состояния ГШ мигает. Х5М должен войти в режим измерения зависимости собственного коэффициента шума от частоты. Для вывода результатов измерений в область диаграмм на экране компьютера в списке измерительных трасс выбрать «Tpc1» с привязкой «КШ» и установить флажок в индикаторе отображения трассы, при его отсутствии. В меню измерительной трассы отметить пункт «Автомасштаб» (это следует делать после полного завершения цикла измерений (развертки)).

7.5.5.5 Определить, пользуясь маркерами, максимальные значения $F_{\text{мак}}$ собственного коэффициента шума X5M в следующих поддиапазонах для опции «11P»: от 10 до 50 МГц, свыше 50 до 3200 МГц, свыше 3200 до 16000 МГц и свыше 16000 до 18000 МГц; и соответствующие им частоты \dot{f} ; а для опции «13H» в поддиапазонах: от 10 до 50 МГц, свыше 50 до 3200 МГц, свыше 3200 до 16000 МГц, свыше 16000 до 18000 МГц и свыше 18000 до 20000 МГц. Зафиксировать полученные значения \dot{f} и $F_{\text{мак}}$. Полученную зависимость сохранить с помощью «Менеджера отчётов» X5M. Из частот \dot{f} выбрать частоту \ddot{f} , соответствующую наибольшему значению коэффициента шума из измеренных в диапазоне частот от 50 до 18000 МГц для опции «11P», а для опции «13H» – в диапазоне частот от 50 до 20000 МГц.

7.5.5.6 Остановить процесс измерений, в контекстном меню диаграммы выбрать «Сбросить все маркеры».

	7.5.5.7 Результаты поверки считать положительными, есл	и:
	собственный коэффициент шума, не более:	
	от 10 до 50 МГц	18 дБ
	свыше 50 до 3200 МГц	9 дБ
	свыше 3200 до 16000 МГц	8 дБ
	свыше 16000 до 18000 МГц	11 дБ
	свыше 18000 до 20000 МГц	14 дБ
	собственный коэффициент шума для опций «АТА/70» и/и	или «АПА», не более:
	от 10 до 50 МГц	19дБ
	свыше 50 до 3200 МГц	10 дБ
	свыше 3200 до 16000 МГц	12 дБ
	свыше 16000 до 18000 МГц	12 дБ
	свыше 18000 до 20000 МГц	14 дБ,
T	ивном случае Х5М дальнейшей поверке не подвергается,	, бракуется и направляется в

в противном случае Х5М дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

¹⁾ Для X5M с опцией «13Н» подключить ко входу СВЧ переход тип 3,5 мм, розетка – тип 3,5 мм, розетка либо тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка.

7.5.6 Определение диапазонов и систематических погрешностей измерений коэффициента передачи и коэффициента шума

Оценки погрешностей получаются на основе результатов измерений нелинейности X5M на синусоидальном сигнале. Метод измерений основан на использовании одной ступени ослабления ступенчатого аттенюатора, значение ослабления которой точно неизвестно, но постоянно и стабильно при переключении. Включением/выключением этой ступени, имеющей номинальное значение ослабления 10 gb^{11} , создается постоянное отношение уровней сигнала Y при разных уровнях сигнала на выходе генератора, что дает возможность оценить нелинейность на разных участках динамического диапазона X5M. Нелинейность X5M исследуется на участке динамического диапазона от 0 до 45 дБ, чтобы проверить наличие запаса в 15 дБ, необходимого при измерении коэффициента передачи в диапазоне от 0 до 30 дБ на шумовом сигнале. Вначале в режиме «Модуляционный метод» осуществляется привязка уровня синусоидального сигнала, подаваемого на вход поверяемого X5M, к уровню мощности включенного ГШ. Данный уровень в дальнейшем будет использоваться в качестве генератора используется измеритель модуля коэффициента передачи.

7.5.6.1 Подготовить к работе ГШ, измеритель модуля коэффициента передачи и отражения для работы в качестве синтезатора частот, наборы мер и ступенчатый аттенюатор в соответствии с их руководствами по эксплуатации.

7.5.6.2 Запустить программу управления в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Установить начальную и конечную частоты диапазона 50 и 52 МГц (центральная частота 51 МГц). Установить количество частотных точек 3, полосу фильтра ПЧ 3 МГц, степень усреднения 14, подтвердить ввод данных.

7.5.6.3 Подключить ГШ непосредственно ко входу «СВЧ» измерителя²⁾³⁾. Начать процесс измерений. Установить маркер на частоту 51 МГц, отметить «Дискретный», через контекстное меню окна маркера в свойствах установить количество отображаемых знаков 3 по оси ординат. Измерить уровень мощности сигнала ГШ $P_{\Gamma III}^{BKЛ 4)}$, пользуясь трассой с привязкой «Мощн (ГШ вкл)», и зафиксировать показание.

7.5.6.4 Собрать схему измерений в соответствии с рисунком 7.7⁵⁾, проверив качество всех соединений. Установить полосу фильтра ПЧ 0,1 МГц.

7.5.6.5 Установить ослабление ступенчатого аттенюатора 0 дБ (далее по тексту – исходное положение). Изменяя уровень выходной мощности измерителя модуля коэффициента передачи и отражения, получить показание X5M-18 $P_{BX} = (P_{\Gamma III}^{BK \pi} + 45 \pm 0.2)^{-4}$. Установить шаг 5 дБ регулировки уровня мощности измерителя модуля коэффициента передачи и отражения.

¹⁾ Можно использовать меньшие ступени, например 1 или 5 дБ, с соответствующей корректировкой процедур измерений и обработки результатов.

²⁾ Для X5M с опцией «13Н» подключить ко входу СВЧ переход тип 3,5 мм, розетка – тип 3,5 мм, розетка либо тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка.

³⁾ Электропитание ГШ, здесь и далее, подается согласно п. 7.5.5.2.

⁴⁾ В измерителях X5M и P2M для обозначения единицы абсолютного уровня сигнала по мощности, определяемого как 10 lg(P), где P – значение мощности, выраженной в милливаттах, используется дБм.

⁵⁾ В качестве аттенюатора A4 можно использовать два соединенных последовательно ступенчатых аттенюатора, например типа BM 577A, используя первый для изменения уровня сигнала ступенями по 5 дБ, а второй для имитации постоянного отношения Y уровней сигнала, используя для этого участок от 0 до 10 дБ. На входе второго аттенюатора необходимо включить фиксированный развязывающий аттенюатор 10 дБ.

ПК – персональный компьютер; Коммутатор – коммутатор локальной сети; Р2М – измеритель модуля коэффициента передачи и отражения; А1–А3 – аттенюаторы соответственно 30 дБ, 10 дБ, 10 дБ из наборов мер; А4 – ступенчатый аттенюатор; П1 и П2 – переходы тип N, вилка – тип 3,5 мм, розетка (для опции «13Н» П2 – переход тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка); П3 – переход тип III, вилка – тип 3,5 мм, розетка; К1 и К2 – кабели тип SMA, вилка – тип SMA, вилка – тип SMA, вилка

Рисунок 7.7 – Схема для проверки диапазонов и систематических погрешностей измерений коэффициента передачи и коэффициента шума

7.5.6.6 С целью уменьшения влияния возможного дрейфа показаний на результаты измерений, выполнить операции в последовательности, приведенной ниже. Дождавшись установившегося значения, измерить уровень мощности сигнала $P'_{A,BblK,1}$ ¹⁾, пользуясь трассой с привязкой «Мощн (ГШ вкл)». Увеличить ослабление ступенчатого аттенюатора на 10 дБ и измерить уровень мощности $P_{A,BK,1}$ ¹⁾. Установить ступенчатый аттенюатор в исходное положение и измерить уровень мощности $P''_{A,BblK,1}$ ¹⁾. Рассчитать по результатам измерений отношение Y по формуле (7.3):

$$Y = P_{A.BbIK\pi} - P_{A.BK\pi}, \qquad (7.3)$$

где $P_{A,B \to K \pi} = \frac{P'_{A,B \to K \pi} + P''_{A,B \to K \pi}}{2}.$

Данные занести в таблицу 7.2. Имитируемые при этих измерениях значения КП приведены в таблице 7.2, столбец 3 «Имитация КП».

7.5.6.7 Поочередно уменьшая уровень выходной мощности измерителя модуля коэффициента передачи и отражения с шагом 5 дБ в последовательности, указанной в таблице 7.2 столбец 2 «Уровень входной мощности, дБ», повторять каждый раз процедуру по п. 7.5.6.6. Если требуемые уровни мощности меньше нижней границы диапазона выходных мощностей измерителя модуля коэффициента передачи и отражения, необходимо подключать дополнительные аттенюаторы из набора мер между аттенюаторами А2 и А3 (во время присоединения аттенюаторов необходимо выключать выходную мощность измерителя модуля коэффициента передачи и отражения). Для устранения влияния собственного шума измерителя на результат изме-

¹⁾ В измерителях X5M и P2M для обозначения единицы абсолютного уровня сигнала по мощности, определяемого как 10 lg(P), где P – значение мощности, выраженной в милливаттах, используется дБм.

рения Y необходимо измерить его уровень P_{изм}¹⁾. Измерение P_{изм} проводить при выключенной мощности CBЧ измерителя модуля коэффициента передачи и отражения. Это можно сделать в конце каждого из измерений. Расчет отношения Y, дБ, выполнять по формуле (7.4):

$$Y[\Box B] = 10lg \left[\frac{P_{A,B \cup IK \Pi}[MBT] - P_{U3M}[MBT]}{P_{A,B K \Pi}[MBT] - P_{U3M}[MBT]} \right].$$
(7.4)

Для пересчета в милливатты результатов измерений уровней мощности Р использовать формулу (7.5):

$$P[MBT] = 10^{0,1 \cdot P}.$$
(7.5)

Таблица 7.2 – Измерение отношения уровней сигнала Y на разных участках динамического диапазона

i	Уровень входной мощно- сти	Имитация КП, дБ	Мощность ченной стуг Р' _{а.выкл}	при выклю- пени Р" _{А.ВЫКЛ}	Мощность при вклю- ченной сту- пени, Р _{А.ВКЛ}	Уровень соб- ственных шумов, Р _{изм}	Отноше- ние Ү, дБ
1	2	3	4	5	6	7	8
		Перегрузка					
1	P _{BX}	от 45 до 35				-	
2	$P_{BX} - 5$	от 40 до 30				-	
3	$P_{BX} - 10$	от 35 до 25				-	
4	$P_{BX} - 15$	от 30 до 20				-	
5	$P_{BX} - 20$	от 25 до 15					
6	$P_{BX} - 25$	от 20 до 10					
7	$P_{BX} - 30$	от 15 до 5					
8	$P_{BX} - 35$	от 10 до 0					
9	$P_{BX} - 40$	от 5 до -5					
10	$P_{BX} - 45$	от 0 до -10					
11	$P_{BX} - 50$	от -5 до -15					
12	$P_{BX} - 55$	от -10 до -20					

Обработка результатов измерений осуществляется в следующей последовательности:

а) рассчитать среднее значение Y₀, дБ, ослабления используемой ступени 10 дБ по формуле (7.6):

$$Y_{0} = \frac{1}{4} \cdot [Y_{4} + Y_{5} + Y_{6} + Y_{7}], \qquad (7.6)$$

где

 Y_4, Y_5, Y_6, Y_7 – перепады, полученные соответственно при уровнях входной мощности $P_{BX} - 15, P_{BX} - 20, P_{BX} - 25, P_{BX} - 30$ дБ.

б) рассчитать погрешности измерений коэффициента передачи из-за нелинейности измерительного тракта $\delta K_{HEЛ}$ на двух участках динамического диапазона, соответствующих измерению КП от 0 до 45 дБ и от 0 до минус 20 дБ, по формулам (7.7), (7.8):

$$\delta K_{\text{HEЛI}} = \sum_{i=1}^{8} (Y_i - Y_0), \qquad (7.7)$$

$$\delta K_{\text{HEJ2}} = \sum_{i=9}^{12} (Y_i - Y_0), \qquad (7.8)$$

где і – номер измерения перепада Ү.

Результат поверки считать положительным, если оба значения | $\delta K_{_{Hen}}$ | ≤ 0,15 дБ.

в) рассчитать погрешность измерений коэффициента шума из-за нелинейности измерительного тракта $\delta F_{HEЛ}$ в дБ. Для этого заполнить таблицу 7.3. Расчет «измеренного» коэффициента шума NF_i, соответствующего отношению Y_i \approx Y₀, выполнить по формуле (7.9):

$$NF_{i}[\Box B] = 101g \left[\frac{ENR[oth.eg.]}{Y_{i}[oth.eg.] - 1} \right] = 101g \left[\frac{10^{2}}{10^{Y_{i}[\Box B]/10} - 1} \right],$$
(7.9)

За погрешность ΔNFi значения NFi принять разность (7.10):

$$\Delta NF_i = NF_i - NF_0, \qquad (7.10)$$

где NF₀ =
$$10 \cdot lg[10^2 / (10^{0,1 \cdot Y_0[дБ]} - 1)].$$

Таблица 7.3 – Расчет погрешности измерений КШ, соответствующего отношению мощностей $Y_i \approx 10 \text{ дБ}$ ($Y_0 = _____ \text{дБ}$; $NF_0 = _____ \text{дБ}$)

i	Имитация КП, дБ	Отношение Y _i , дБ (см. таблица 7.2, столбец 6)	«Измеренный» ко- эффициент шума, NF _i , дБ	Погрешность измерения КШ, ΔNF _i , дБ
1	2	3	4	5
1	от 45 до 35			$\Delta NF_1 =$
2	от 40 до 30			$\Delta NF_2 =$
3	от 35 до 25			$\Delta NF_3 =$
4	от 30 до 20			$\Delta NF_4 =$
5	от 25 до 15			$\Delta NF_5 =$
6	от 20 до 10			$\Delta NF_6 =$
7	от 15 до 5			$\Delta NF_7 =$
8	от 10 до 0			$\Delta NF_8 = $

Провести расчет погрешностей $\delta F_{\text{HEЛ}}$ для разных отношений У по формулам, приведенным в таблице 7.4, используя данные последнего столбца таблицы 7.3. Результаты расчета занести в таблицу 7.4.

Отношение Ү, дБ	Погрешность измерений бF _{нел} , дБ	Пределы допускаемых значений погрешности $\delta F_{\rm HEЛ}$, дБ
0,5	$\Delta NF_1 / 20 = _$	±0,015
5	$\Delta NF_1/2 = $	$\pm 0,070$
10	$\Delta NF_1 =$	$\pm 0,090$
15	$\Delta NF_1 + \Delta NF_2 =$	$\pm 0,095$
20	$\Delta NF_1 + \Delta NF_2 + \Delta NF_3 =$	±0,100
20	$\Delta NF_2 + \Delta NF_3 + \Delta NF_4 = _$	±0,100
20	$\Delta NF_3 + \Delta NF_4 + \Delta NF_5 = _$	±0,100
20	$\Delta NF_4 + \Delta NF_5 + \Delta NF_6 =$	±0,100
20	$\Delta NF_5 + \Delta NF_6 + \Delta NF_7 = _$	±0,100
20	$\Delta NF_6 + \Delta NF_7 + \Delta NF_8 = _$	±0,100

Таблица 7.4 – Расчет погрешности $\delta F_{\text{HEЛ}}$ измерений КШ за счет нелинейности для разных отношений Ү

7.5.6.8 Установить ослабление ступенчатого аттенюатора 0 дБ. Убрать аттенюатор А2 и дополнительные аттенюаторы, если они были подключены ранее. Установить в X5M-18 степень усреднения 13.

7.5.6.9 Регулируя уровень сигнала на выходе измерителя модуля коэффициента передачи и отражения с шагом 0,1 дБ, установить максимальный уровень, при котором еще не включается индикатор ПЕРЕГРУЗКА X5M, расположенный на передней панели. Убедиться, что при уменьшении уровня сигнала относительно найденного максимума показания X5M убывают, и, наоборот, при увеличении – возрастают. Зафиксировать максимальный уровень мощности Р_{вх.макс}, измеренный X5M. Для масштабирования результатов измерений в меню трассы выбрать «Автомасштаб».

7.5.6.10 Увеличить ослабление ступенчатого аттенюатора на 10 дБ и измерить уровень мощности Р_{вх}. Зафиксировать результат измерений.

7.5.6.11 Проверить выполнение условия $|(P_{BX,MAKC} - P_{BX}) - Y_0| \le 0,1 \, \text{дБ}$, которое свидетельствует о правильном функционировании индикатора ПЕРЕГРУЗКА.

7.5.6.12 Результаты поверки, считать положительными, если:

- для обоих значений $|\delta K_{_{Hen}}|$ по п.7.5.6.7 выполняется условие $|\delta K_{_{Hen}}| \le 0,15$ дБ, где ±0,15 дБ – пределы допускаемой абсолютной погрешности измеренийКП из-за нелинейности;

- найденные значения δF_{нел} не выходят за пределы допускаемых абсолютных погрешностей измерений КШ из-за нелинейности, приведенных в последнем столбце таблицы 7.4.

В противном случае Х5М дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.7 Определение случайной погрешности измерений коэффициента передачи

7.5.7.1 Подготовить к работе ГШ, пользуясь указаниями, приведенными в руководстве по эксплуатации на него.

7.5.7.2 Подключить ГШ к входу «СВЧ» Х5М¹⁾. Запустить программу управления в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Установить такие частоты, чтобы получить участок шириной 2 МГц в окрестности частоты \ddot{f} наибольшего коэффициента шума Х5М (значение частоты \ddot{f} определено в п. 7.5.5); если частота \ddot{f} совпадает с граничной частотой диапазона измерителя, установить начальную частоту, отличающуюся на 2 МГц от граничной частоты; установить ширину полосы пропускания фильтра ПЧ 3 МГц, количество точек 3, степень усреднения 13, подтвердить ввод данных. В меню «Параметры» установить флажок в пункте «Учет калибровки». Если параметры ГШ не заданы, то через пункт «Характеристика ГШ» меню «Параметры» открыть таблицу ГШ и ввести в нее значение ИОШТ из свидетельства о поверке ГШ. Нажать кнопку «ОК».

7.5.7.3 Включить отображение трассы коэффициента передачи (КП), установив при необходимости флажок в индикаторе отображения трассы в строке «КП». Выбрать маркер и установить его на частоту \ddot{f} , в контекстном меню маркера отметить «Дискретный», выбрать «Отображаемые трассы» и далее отметить «КП». Открыть диалоговое окно «Свойства маркера» и в группе «Кол-во отображаемых дробных знаков» увеличить количество знаков по оси ординат до 3, включить режим статистической обработки, установив флажок в группе «Отображение статистики» (далее по тексту – включить статистику). Нажать «ОК». Нажать кнопку запуска измерений.

7.5.7.4 Выдержав прибор в режиме измерений не менее 10 минут, остановить измерения. Нажать кнопку «Калибровка» на панели инструментов, затем – кнопку «Далее» в появившемся окне «Мастер калибровки измерительного тракта». Измеритель перейдет в режим «Калибровка», сопровождающийся миганьем индикатора состояния ГШ и заполнением строки индикатора выполнения процедуры.

7.5.7.5 По завершении процедуры «Калибровка» нажать кнопку «Готово» и далее кнопку запуска измерений. В меню трассы КП отметить пункт «Автомасштаб». Затем установить для КП масштаб 0,1 дБ/дел. Обновить статистику в окне маркера, сдвинув окно маркера по вертикали. Выждав 30 секунд для установления показаний, остановить процесс измерений. В идеальном случае измеритель должен показывать значение КП 0 дБ, поскольку на его входе ничего не изменилось - к нему по-прежнему подключен ГШ. Однако из-за влияния флуктуаций показание отличаются от 0 дБ. Отклонение ΔK значения КП от 0 дБ можно использовать для проверки отсутствия (или малости) постоянного смещения и оценки случайной погрешности δ_{Kcn} результата измерения КП для объекта с единичным усилением.

7.5.7.6 Повторить 15 раз процедуру «калибровка – измерение» по п.п. 7.5.7.4 и 7.5.7.5, запуская каждый раз после «калибровки» измерение и обновляя статистику в окне маркера, дожидаясь установления показаний в течение 30 секунд и записывая результаты измерения от-клонений ΔK_i , где i – номер измерения. Следить, чтобы промежутки времени между соседними «калибровками» были не более 1 минуты.

7.5.7.7 Вычислить СКО $\tilde{\sigma}_{\Delta K}$ и среднее арифметическое значение $\overline{\Delta K}$ полученного ряда с результатами измерений. Найденное значение СКО позволяет получить оценку доверительных границ случайной погрешности δ_{Ken} при степени усреднения 13 и доверительной вероятности 0,95: $\delta_{Ken} = \pm 2 \ \tilde{\sigma}_{\Delta K}$.

¹⁾ Для X5M с опцией «13Н» подключить ко входу СВЧ переход тип 3,5 мм, розетка – тип 3,5 мм, розетка либо тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка.

- выполняется условие малости смещения результата «калибровки»: |∆К| ≤ 0,2 дБ;

- выполняется условие $\widetilde{\sigma}_{_{\Delta K}} < 0,06$ дБ, где 0,06 дБ – предел допускаемого среднеквадратического отклонения случайной погрешности измерений коэффициента передачи объекта с единичным усилением при степени усреднения 13 и ширине полосы селективного фильтра 3 МГц.

В противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

7.5.8 Определение нестабильности результатов измерений коэффициента шума

Операцию поверки следует начинать с «холодным» измерителем – не ранее чем через 2 часа после его выключения. Нестабильность определяется по результатам измерений собственного КШ измерителя на частоте \ddot{f} , соответствующей наибольшему значению КШ $F_{\text{мак}}$ (см. п. 7.5.5).

7.5.8.1 Включить Х5М. Записать время включения.

7.5.8.2 Подготовить к работе ГШ, пользуясь указаниями, приведенными в руководстве по эксплуатации на него. Подключить ГШ к входу «СВЧ» Х5М¹⁾.

7.5.8.3 Запустить программу управления в режиме «Модуляционный метод», произвести подключение к измерителю. Нажать кнопку «Восстановить начальные параметры». Установить начальную и конечную частоты диапазона, отличающиеся на 2 МГц от частоты измерения \ddot{f} . Если значение частоты \ddot{f} совпадает с граничной частотой измерителя, то установить начальную частоту, отличающуюся на 4 МГц от граничной частоты. Установить количество точек 5, ширину полосы пропускания фильтра ПЧ 3 МГц, степень усреднения 18, подтвердить ввод данных. В меню «Параметры» выбрать «Характеристика ГШ». Проверить соответствие значений ИОШТ генератора шума, приведенных в появившейся таблице, используемому ГШ. При необходимости заменить таблицу или занести в нее значения ИОШТ из свидетельства о поверке ГШ, после этого нажать кнопку «ОК».

7.5.8.4 Установить маркер на частоту измерения \hat{f} . В диалоговом окне «Свойства маркера» увеличить «Кол-во отображаемых дробных знаков» по оси ординат до 3 и нажать кнопку «ОК». В контекстном меню маркера отметить флажком «Дискретный».

7.5.8.5 Через 60 минут после включения измерителя начать процесс измерений и записать 20 последовательных результатов F, дБ, измерения КШ по показаниям маркера. Показания обновляются через 3-5 секунд. Если внутри интервала наблюдения происходит изменение показания на 1 единицу младшего разряда, использовать первое из двух показаний.

7.5.8.6 Повторить измерения F по п. 7.5.8.5 через 10 минут после их начала.

7.5.8.7 Для получения СКО σF ряда показаний, вычисляемого самим измерителем, открыть диалоговое окно «Свойства маркера» и включить «Отображение» в группе «Статистика». Дождаться установившегося показания в окне маркера и записать значение СКО σF.

7.5.8.8 Вычислить СКО $\sigma \widetilde{F}_1$, $\sigma \widetilde{F}_2$ и средние значения \overline{F}_1 , \overline{F}_2 рядов с результатами измерений по п.п. 7.5.8.5 и 7.5.8.6 соответственно. Рассчитать оценки: а) смещения среднего значения результатов измерений КШ (нестабильности) за 10 минут: $\Delta F = \overline{F}_2 - \overline{F}_1$; б) среднего значения СКО: $\sigma \widetilde{F} = \sqrt{\sigma \widetilde{F}_1 \cdot \sigma \widetilde{F}_2}$.

7.5.8.9 Результат поверки считать положительным, если:

- нестабильность результатов измерений КШ за 10 минут после прогрева измерителя в течение 60 минут $|\,\Delta F\,|\,{<}\,0{,}1\,{\rm gF}\,;$

¹⁾ Для X5M с опцией «13Н» подключить ко входу СВЧ переход тип 3,5 мм, розетка – тип 3,5 мм, розетка либо тип NMD 3,5 мм, розетка – тип 3,5 мм, розетка.

- σF̃ < 0,06 дБ, где 0,06 дБ – предел допускаемого среднеквадратического отклонения случайной погрешности измерений собственного КШ (или КШ объекта без использования этапа "Калибровка") при степени усреднения 18 и ширине полосы фильтра ПЧ ЗМГц;

- $\sigma\widetilde{F}$ отличается от значения СКО σF по п. 7.5.8.7 не более чем в 2 раза.

В противном случае X5M дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

8 Оформление результатов поверки

8.1 При положительных результатах поверки оформляют свидетельство о поверке в соответствии с ПР 50.2.006-94; в формуляре X5M вносят сведения о поверке.

8.2 При отрицательных результатах поверки оформляют извещение о непригодности по ПР 50.2.006-94, результаты предыдущей поверки аннулируются (аннулируется свидетельство о поверке и гасится поверительное клеймо), в формуляре X5M делается соответствующая отметка.

Приложение. Используемые сокращения

ГШ – генератор шума

ИОШТ – избыточная относительная шумовая температура

КШ – коэффициент шума

КП – коэффициент передачи

КСВН – коэффициент стоячей волны напряжения

ПГ – погрешность

ПЧ – промежуточная частота

СКО – среднее квадратическое отклонение